Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Vet Microbiol ; 283: 109781, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20244970

ABSTRACT

FIP is a fatal feline disease caused by FIPV. Two drugs (GS441524 and GC376) target FIPV and have good therapeutic effect when administered by subcutaneous injection. However, subcutaneous injection has limitations compared with oral administration. Additionally, the oral efficacy of the two drugs has not been determined. Here, GS441524 and GC376 were shown to efficiently inhibit FIPV-rQS79 (recombination virus with a full-length field type I FIPV and the spike gene replaced with type II FIPV) and FIPV II (commercially available type II FIPV 79-1146) at a noncytotoxic concentration in CRFK cells. Moreover, the effective oral dose was determined via the in vivo pharmacokinetics of GS441524 and GC376. We conducted animal trials in three dosing groups and found that while GS441524 can effectively reducing the mortality of FIP subjects at a range of doses, GC376 only reducing the mortality rate at high doses. Additionally, compared with GC376, oral GS441524 has better absorption, slower clearance and a slower rate of metabolism. Furthermore, there was no significant difference between the oral and subcutaneous pharmacokinetic parameters. Collectively, our study is the first to evaluate the efficacy of oral GS441524 and GC376 using a relevant animal model. We also verified the reliability of oral GS441524 and the potential of oral GC376 as a reference for rational clinical drug use. Furthermore, the pharmacokinetic data provide insights into and potential directions for the optimization of these drugs.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Reproducibility of Results , Administration, Oral
2.
Infect Genet Evol ; 112: 105463, 2023 08.
Article in English | MEDLINE | ID: covidwho-20244841

ABSTRACT

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Cats , Humans , Swine , Coronavirus, Canine/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Molecular Epidemiology , Mutation , Animals, Domestic , China/epidemiology , Dog Diseases/epidemiology
3.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20244362

ABSTRACT

Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.


Subject(s)
COVID-19 , Animals , Cats , COVID-19/pathology , SARS-CoV-2 , Lung , Immunity, Humoral
4.
J Appl Lab Med ; 8(4): 726-741, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-20231323

ABSTRACT

BACKGROUND: Throughout the COVID-19 pandemic, veterinary diagnostic laboratories have tested diagnostic samples for SARS-CoV-2 both in animals and over 6 million human samples. An evaluation of the performance of those laboratories is needed using blinded test samples to ensure that laboratories report reliable data to the public. This interlaboratory comparison exercise (ILC3) builds on 2 prior exercises to assess whether veterinary diagnostic laboratories can detect Delta and Omicron variants spiked in canine nasal matrix or viral transport medium. METHODS: The ILC organizer was an independent laboratory that prepared inactivated Delta variant at levels of 25 to 1000 copies per 50 µL of nasal matrix for blinded analysis. Omicron variant at 1000 copies per 50 µL of transport medium was also included. Feline infectious peritonitis virus (FIPV) RNA was used as a confounder for specificity assessment. Fourteen test samples were prepared for each participant. Participants used their routine diagnostic procedures for RNA extraction and real-time reverse transcriptase-PCR. Results were analyzed according to International Organization for Standardization (ISO) 16140-2:2016. RESULTS: Overall, laboratories demonstrated 93% detection for Delta and 97% for Omicron at 1000 copies per 50 µL. Specificity was 97% for blank samples and 100% for blank samples with FIPV. No differences in Cycle Threshold (Ct) values were significant for samples with the same virus levels between N1 and N2 markers, nor between the 2 variants. CONCLUSIONS: The results indicated that all ILC3 participants were able to detect both Delta and Omicron variants. The canine nasal matrix did not significantly affect SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Cats , Humans , Animals , Dogs , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/veterinary , Laboratories , Pandemics , RNA , COVID-19 Testing
5.
Microbiol Spectr ; 11(3): e0255322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-20230845

ABSTRACT

The susceptibility of domestic cats to infection with SARS-CoV-2 has been demonstrated by several experimental studies and field observations. We performed an extensive study to further characterize the transmission of SARS-CoV-2 between cats, through both direct and indirect contact. To that end, we estimated the transmission rate parameter and the decay parameter for infectivity in the environment. Using four groups of pair-transmission experiment, all donor (inoculated) cats became infected, shed virus, and seroconverted, while three out of four direct contact cats got infected, shed virus, and two of those seroconverted. One out of eight cats exposed to a SARS-CoV-2-contaminated environment became infected but did not seroconvert. Statistical analysis of the transmission data gives a reproduction number R0 of 2.18 (95% CI = 0.92 to 4.08), a transmission rate parameter ß of 0.23 day-1 (95% CI = 0.06 to 0.54), and a virus decay rate parameter µ of 2.73 day-1 (95% CI = 0.77 to 15.82). These data indicate that transmission between cats is efficient and can be sustained (R0 > 1), however, the infectiousness of a contaminated environment decays rapidly (mean duration of infectiousness 1/2.73 days). Despite this, infections of cats via exposure to a SARS-CoV-2-contaminated environment cannot be discounted if cats are exposed shortly after contamination. IMPORTANCE This article provides additional insight into the risk of infection that could arise from cats infected with SARS-CoV-2 by using epidemiological models to determine transmission parameters. Considering that transmission parameters are not always provided in the literature describing transmission experiments in animals, we demonstrate that mathematical analysis of experimental data is crucial to estimate the likelihood of transmission. This article is also relevant to animal health professionals and authorities involved in risk assessments for zoonotic spill-overs of SARS-CoV-2. Last but not least, the mathematical models to calculate transmission parameters are applicable to analyze the experimental transmission of other pathogens between animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , COVID-19/veterinary , Models, Theoretical , Risk Assessment
6.
Comp Immunol Microbiol Infect Dis ; 95: 101963, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20230812

ABSTRACT

Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses affecting cats worldwide, and the prevalence of infection varies considerably according to the geographic area. We retrospectively described FIV- and FeLV-associated diseases in a population of 1470 necropsied cats, of which 396 (26.9%) were infected with FeLV, 199 (13.5%) with FIV, and 134 (9.1%) with FeLV and FIV concomitantly. Cats infected with FeLV (OR 3.4) and co-infected with FeLV and FIV (OR 1.9) were more likely to have neoplasms. The diagnosis of lymphoma and leukemia was higher in cats infected with FeLV (OR 3.9 and 19.4, respectively) and coinfected with FeLV and FIV (OR 1.9 and 19.3, respectively). The odds of diagnosing bacterial diseases were higher in cats coinfected with FeLV and FIV (OR: 2.8), whereas the odds of viral diseases were higher in those infected with FeLV (OR: 2.8), with 2.2 times more diagnoses of feline infectious peritonitis. Neoplastic and infectious diseases in FIV-infected cats did not differ significantly from those in uninfected cats. According to our results, a high prevalence of retroviral infections was observed in southern Brazil, mainly in relation to FeLV. Infected cats were significantly younger than uninfected cats. The main causes of death associated with FeLV infection and FeLV and FIV coinfection were neoplastic and infectious diseases. In contrast, FIV infection was not associated with any specific condition.


Subject(s)
Cat Diseases , Communicable Diseases , Feline Acquired Immunodeficiency Syndrome , Immunodeficiency Virus, Feline , Lentivirus Infections , Cats , Animals , Leukemia Virus, Feline , Retrospective Studies , Lentivirus Infections/epidemiology , Lentivirus Infections/veterinary , Communicable Diseases/veterinary , Feline Acquired Immunodeficiency Syndrome/epidemiology , Cat Diseases/epidemiology
7.
Oral Dis ; 28 Suppl 2: 2492-2499, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2322192

ABSTRACT

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur through saliva and aerosol droplets deriving from the upper aerodigestive tract during coughing, sneezing, talking, and even during oral inspection or dental procedures. The aim of this study was to assess in vitro virucidal activity of commercial and experimental mouthwashes against a feline coronavirus (FCoV) strain. Commercial and experimental (commercial-based products with addition of either sodium dodecyl sulfate (SDS) or thymus vulgaris essential oil (TEO) at different concentrations) mouthwashes were placed in contact with FCoV for different time intervals, that is, 30 s (T30), 60 s (T60), and 180 s (T180); subsequently, the virus was titrated on Crandell Reese Feline Kidney cells. An SDS-based commercial mouthwash reduced the viral load by 5 log10 tissue culture infectious dose (TCID)50 /50 µl at T30 while a cetylpyridinium (CPC)-based commercial mouthwash was able to reduce the viral titer of 4.75 log10 at T60. Furthermore, five experimental mouthwashes supplemented with SDS reduced the viral titer by 4.75-5 log10 according to a dose- (up to 4 mM) and time-dependent fashion.


Subject(s)
COVID-19 , Coronavirus, Feline , Cats , Animals , Mouthwashes/pharmacology , SARS-CoV-2 , Cetylpyridinium
8.
Vet Q ; 40(1): 243-249, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2315258

ABSTRACT

Several cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection transmitted from human owners to their dogs have recently been reported. The first ever case of SARS-CoV-2 transmission from a human owner to a domestic cat was confirmed on March 27, 2020. A tiger from a zoo in New York, USA, was also reportedly infected with SARS-CoV-2. It is believed that SARS-CoV-2 was transmitted to tigers from their caretakers, who were previously infected with this virus. On May 25, 2020, the Dutch Minister of Agriculture, Nature and Food Quality reported that two employees were infected with SARS-CoV-2 transmitted from minks. These reports have influenced us to perform a comparative analysis among angiotensin-converting enzyme 2 (ACE2) homologous proteins for verifying the conservation of specific protein regions. One of the most conserved peptides is represented by the peptide "353-KGDFR-357 (H. sapiens ACE2 residue numbering), which is located on the surface of the ACE2 molecule and participates in the binding of SARS-CoV-2 spike receptor binding domain (RBD). Multiple sequence alignments of the ACE2 proteins by ClustalW, whereas the three-dimensional structure of its binding region for the spike glycoprotein of SARS-CoV-2 was assessed by means of Spanner, a structural homology modeling pipeline method. In addition, evolutionary phylogenetic tree analysis by ETE3 was used. ACE2 works as a receptor for the SARS-CoV-2 spike glycoprotein between humans, dogs, cats, tigers, minks, and other animals, except for snakes. The three-dimensional structure of the KGDFR hosting protein region involved in direct interactions with SARS-CoV-2 spike RBD of the mink ACE2 appears to form a loop structurally related to the human ACE2 corresponding protein loop, despite of the reduced available protein length (401 residues of the mink ACE2 available sequence vs 805 residues of the human ACE2). The multiple sequence alignments of the ACE2 proteins shows high homology and complete conservation of the five amino acid residues: 353-KGDFR-357 with humans, dogs, cats, tigers, minks, and other animals, except for snakes. Where the information revealed from our examinations can support precision vaccine design and the discovery of antiviral therapeutics, which will accelerate the development of medical countermeasures, the World Health Organization recently reported on the possible risks of reciprocal infections regarding SARS-CoV-2 transmission from animals to humans.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/transmission , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/transmission , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , COVID-19 , Cats , Coronavirus Infections/prevention & control , Dogs , Humans , Mink , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Pneumonia, Viral/prevention & control , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Tigers
9.
Appl Microbiol Biotechnol ; 107(12): 3983-3996, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2314427

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.


Subject(s)
COVID-19 , Humans , Animals , Cats , COVID-19/diagnosis , SARS-CoV-2/genetics , CRISPR-Cas Systems , Real-Time Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
10.
Vet Pathol ; 60(3): 352-359, 2023 05.
Article in English | MEDLINE | ID: covidwho-2320504

ABSTRACT

Ocular involvement in systemic diseases is frequent in cats; however, without concurrent clinical and ophthalmic examinations with gross and/or histologic analysis of the eye, these findings can be underdiagnosed. This article aims to provide gross, histologic, and immunohistochemical characteristics of ocular lesions from cats submitted to necropsy, focusing on those caused by systemic infectious agents. Cats that died due to a systemic infectious disease were selected based on necropsy diagnosis and presence of ocular lesions. Gross, histologic, and immunohistochemical findings were recorded. From April 2018 to September 2019, 849 eyes of 428 cats were evaluated. Histologic abnormalities were seen in 29% of cases, which were classified as inflammatory (41%), neoplastic (32%), degenerative (19%), and metabolic/vascular (8%). Macroscopic changes were present in one-third of eyes with histologic lesions. Of these, 40% were attributed to inflammatory or neoplastic diseases associated with infectious agents. The most important infectious agents causing ocular disease in this study were feline leukemia virus, feline infectious peritonitis virus, and Cryptococcus sp. The most common ocular abnormalities associated with infectious agents were uveitis (anterior, posterior, or panuveitis), optic neuritis, and meningitis of the optic nerve. Ocular lesions secondary to systemic infections in cats are frequent; however, these are not always diagnosed because gross lesions are less common than histologic lesions. Therefore, both gross and histologic evaluation of the eyes of cats is recommended, mainly for cases in which the clinical suspicion or necropsy diagnosis suggests that an infectious agent might be related to the cause of death.


Subject(s)
Cat Diseases , Communicable Diseases , Feline Infectious Peritonitis , Neoplasms , Sepsis , Uveitis , Cats , Animals , Eye/pathology , Uveitis/pathology , Uveitis/veterinary , Neoplasms/pathology , Neoplasms/veterinary , Sepsis/pathology , Sepsis/veterinary , Communicable Diseases/pathology , Communicable Diseases/veterinary , Cat Diseases/pathology , Feline Infectious Peritonitis/pathology
11.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320019

ABSTRACT

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cats , Animals , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , United Kingdom/epidemiology
13.
J Feline Med Surg ; 24(12): e628-e635, 2022 12.
Article in English | MEDLINE | ID: covidwho-2319904

ABSTRACT

OBJECTIVES: The aim of this study was to report the incidence of transfusion reactions in cats, including acute haemolysis (AH), occurring within 24 h of receiving a xenotransfusion. An additional aim was to determine whether cases with AH could be classified as having an acute haemolytic transfusion reaction (AHTR) as per the definition provided by the Association of Veterinary Haematology and Transfusion Medicine's Transfusion Reaction Small Animal Consensus Statement. METHODS: Medical records of cats that received canine packed red blood cells (PRBCs) between July 2018 and September 2020 at a veterinary hospital were reviewed. The incidence of AH, AHTRs, febrile non-haemolytic transfusion reactions (FNHTRs), transfusion-associated circulatory overload and septic transfusion reactions were recorded. RESULTS: The medical records of 53 cats were retrospectively evaluated. Twenty-three (43%) cats had transfusion reactions. Thirteen (25%) cats had AH; however, only four (8%) met the definition of an AHTR. Ten (19%) cats were determined to have FNHTRs. Survival to discharge of cats affected by AH was 50% (25% for cases that met the definition of an AHTR). Survival to discharge of cats not suffering from AHTR was 40%. CONCLUSIONS AND RELEVANCE: This report indicates that a higher proportion of cats undergo AH (25%) when administered canine PRBCs than previously reported, although many could not be classed as having an AHTR due to an apparently adequate packed cell volume rise. Challenges with sourcing feline blood in emergency situations occasionally necessitates the use of xenotransfusion in transfusion medicine. Clinicians should be aware that haemolysis after xenotransfusion can occur within 24 h and that a repeat feline transfusion may be required sooner than anticipated in some cases.


Subject(s)
Cat Diseases , Dog Diseases , Transfusion Reaction , Cats , Dogs , Animals , Retrospective Studies , Transfusion Reaction/epidemiology , Transfusion Reaction/veterinary , Erythrocytes , Cat Diseases/epidemiology , Cat Diseases/therapy
14.
PLoS One ; 18(4): e0284101, 2023.
Article in English | MEDLINE | ID: covidwho-2301135

ABSTRACT

The COVID-19 pandemic has affected us in numerous ways and may consequently impact our relationships with pet dogs and cats. We conducted a longitudinal survey to examine the temporal patterns of owner-pet relationship, stress, and loneliness during four phases of the pandemic: 1) pre-pandemic (February 2020), 2) lockdown (April to June 2020), 3) reopening (September to December 2020), and 4) recovery (January 2021 to December 2021). We also investigated the effect of pet ownership on stress and loneliness, by considering a set of a priori causal assumptions. In addition, we hypothesized that the differences in the levels of stress and loneliness between dog and cat ownerships were mediated by the owner-pet relationship. A total of 4,237 participants (657 non-pet owners, 1,761 dog owners, and 1,819 cat owners) completed between one and six surveys. Overall, the closeness in the relationship between owners and their pets increased with time during the study period. We also observed that dog owners consistently showed larger decreases in the levels of stress and loneliness than cat and non-pet owners. However, after adjusting for confounders, the findings did not support a mitigating effect of pet ownership. Pet ownership did not alleviate stress, social loneliness resulting from a lack of friendships or workplace relationships, or emotional loneliness due to deficiencies in family relationships. Pet owners, however, reported a lower degree of emotional loneliness caused by deficits in romantic relationships than non-pet owners. Our results also indicated that the differences in stress and loneliness levels between dog and cat ownerships were partially explained by the owner-pet relationship, and once this was accounted for, the differences between them reduced. In summary, this study highlights the dynamic effects of COVID-19 on owner-pet relationship and mental health. It also shows the complexity of the association between pet ownership and mental health, partially mediated by owner-pet relationships.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Humans , Dogs , Cats , Mental Health , Loneliness/psychology , Pets/psychology , COVID-19/epidemiology , Pandemics , Ownership , Communicable Disease Control , Surveys and Questionnaires , Longitudinal Studies
15.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: covidwho-2300058

ABSTRACT

On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to the health of the human population. Not only humans can be infected, but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from 177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-linked immunosorbent assay (ELISA), and the results were combined with information gathered from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5-51.9) and 56.8% (95% CI 49.1-64.4), respectively. In a multivariable logistic regression accounting for data clustered in households, for cats, the number of infected humans in the household and an above-average contact intensity turned out to be significant risk factors; contact with humans outside the household was a protective factor. For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once the human infection was known, was a significant protective factor. No significant association was found between reported clinical signs in animals and their antibody status, and no spatial clustering of positive test results was identified.


Subject(s)
COVID-19 , Cat Diseases , Animals , Cats , Dogs , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Antibodies, Viral , Risk Factors , Germany/epidemiology , Cat Diseases/diagnosis , Cat Diseases/epidemiology
16.
Viruses ; 15(4)2023 04 09.
Article in English | MEDLINE | ID: covidwho-2298657

ABSTRACT

Following the emergence of SARS-CoV-2, cases of pets infected with variants circulating among humans were reported. In order to evaluate the occurrence of SARS-CoV-2 circulation among pets in the Republic of the Congo, we conducted a ten-month study of dogs and cats living in COVID-19-positive households in Brazzaville and neighboring localities. Real-time PCR and the Luminex platform were used to detect SARS-CoV-2 RNA and antibodies to SARS-CoV-2 RBD and S proteins, respectively. Our results show for the first time the simultaneous circulation of several variants of SARS-CoV-2, including viruses from clades 20A and 20H and a putative recombinant variant between viruses from clades 20B and 20H. We found a high seroprevalence of 38.6%, with 14% of tested pets positive for SARS-CoV-2 RNA. Thirty-four percent of infected pets developed mild clinical signs, including respiratory and digestive signs, and shed the virus for about one day to two weeks. These results highlight the potential risk of SARS-CoV-2 interspecies transmission and the benefits of a "One Health" approach that includes SARS-CoV-2 diagnosis and surveillance of viral diversity in pets. This approach aims to prevent transmission to surrounding wildlife as well as spillback to humans.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Dogs , Humans , SARS-CoV-2/genetics , Congo/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , COVID-19 Testing , Dog Diseases/diagnosis , Dog Diseases/epidemiology , RNA, Viral/genetics , Seroepidemiologic Studies , Recombination, Genetic
17.
Zoonoses Public Health ; 70(5): 393-402, 2023 08.
Article in English | MEDLINE | ID: covidwho-2297270

ABSTRACT

Antimicrobial resistance (AMR) in bacterial pathogens reduces the effectiveness of these drugs in both human and veterinary medicine, making judicious antimicrobial use (AMU) an important strategy for its control. The COVID-19 pandemic modified operations in both human and veterinary healthcare delivery, potentially impacting AMU. The goal of this research is to quantify how antimicrobial drug prescribing practices for companion animals in an academic veterinary hospital changed during the pandemic. A retrospective study was performed using prescribing data for dogs and cats collected from the NC State College of Veterinary Medicine (NCSU-CVM) pharmacy, which included prescriptions from both the specialty referral hospital and primary care services. Records (n = 31,769) for 34 antimicrobial drugs from 2019-2020-before and during the pandemic-related measures at the NCSU-CVM-were compared. The prescribed antimicrobials' importance was categorized using the FDA's Guidance for Industry (GFI #152), classifying drugs according to medical importance in humans. A proportional odds model was used to estimate the probability of more important antimicrobials being administered in patients seen during the pandemic versus before (i.e., critically important vs. highly important vs. important). Rates of AMU per week and per patient visit were also compared. During the pandemic, cumulative antimicrobials prescribed per week were significantly decreased in most services for dogs. Weekly rates for Highly Important antimicrobials were also significantly lower in dogs. For important and critically important antimicrobials, rates per week were significantly decreased in various services overall. Rates of antimicrobial administration per patient visit were significantly increased for Highly Important drugs. Patients in the internal medicine, dermatology, and surgery services received significantly more important antimicrobials during the pandemic than before, while cardiology patients received significantly less. These results suggest that the pandemic significantly impacted prescribing practices of antimicrobials for companion animals in this study.


Subject(s)
Anti-Infective Agents , COVID-19 , Cat Diseases , Dog Diseases , Humans , Cats , Animals , Dogs , Pets , Pandemics , Retrospective Studies , Hospitals, Animal , North Carolina , Dog Diseases/drug therapy , Dog Diseases/epidemiology , COVID-19/veterinary , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use
18.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2305997

ABSTRACT

The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine.


Subject(s)
COVID-19 , Coronavirus, Feline , Cats , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Leukocytes, Mononuclear/metabolism , Serogroup , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
19.
Arch Razi Inst ; 78(1): 25-29, 2023 02.
Article in English | MEDLINE | ID: covidwho-2302195

ABSTRACT

The current study aimed to determine the causes associated with ocular infection in cats received at Baghdad veterinary hospital from March 2020 to April 2021. Forty cats (22 females and 18 males) were examined at a small animal clinic in Baghdad veterinary hospital from March 2020 to April 2021. The cats suffered from severe eyes infection (inflammation, lacrimation, redness and other ocular signs). On the other hand, ten healthy cats were examined and prepared for bacterial isolation as a control group. For bacterial isolation, sterile cotton swabs with transport medium were taken gently from the corneal and conjunctiva area of infected eyes. The swabs were placed in an ice box within 24 hours for laboratory culture. Sterile swabs with transport media were used in our study; swabs passed directly on the inferior conjunctival sac of the compromised eye avoiding contact with eyelashes and skin of eyelids. All swabs were inoculated on the following media (5% Sheep blood agar, MacConkey agar and Nutrient agar) at 37ºC for 24 to 48 h.ImmunoChromatoGraphy assay (ICG) of FCV on samples. The results showed that 50%of Mixed bacterial and FCV were the significant cause of isolates; also, it showed that S. aureus was the most bacterial cause of eye infection; young females were mostly infected in February. In conclusion, the wide distribution of ocular infections in cats is due to different causes, especially with bacteria, including Staphylococcus spp. and virus (FCV). The seasonal variation between months plays a significant factor in the spreading of eye infections in the feline.


Subject(s)
Cat Diseases , Eye Infections , Infertility , Sheep Diseases , Female , Male , Sheep , Cats , Animals , Agar , Staphylococcus aureus , Eye Infections/veterinary , Culture Media , Infertility/veterinary
20.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2290598

ABSTRACT

After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/prevention & control , Retrospective Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL